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Determination of Noise.Gravity Recovery and Climate Experiment
(GRACE) data are released as spherical harmonic coefficients
along with calibrated errors that represent the diagonal elements of
the covariance matrix of the estimated global monthly solutions. It
is known that these calibrated errors underestimate the variance in
GRACE solutions (1) and that monthly solutions are dominated
by north–south trending linear stripe anomalies (2). Thus, many
studies estimate their own uncertainty for their modeling (3) and
attempt to remove estimated noise components (2, 4).
In practice, there is little reason to think that time-variable

geopotential signals are best estimated from basis functions that
spread their energy over the entire globe. For instance, processes
that act in different locations at different times (e.g., monsoons)
could easily display competing effects in the same spherical
harmonic coefficient. Thus, in our determination of noise spe-
cifically over Greenland, we estimate signal and noise in the
Slepian basis to avoid contamination from other regions. How-
ever, to illustrate the importance of estimating the noise co-
variance and accounting for it in the subsequent analysis, the
global spherical harmonic analysis performed here provides
a convenient example. This method of estimating the noise in
GRACE data from the spherical harmonic coefficients was first
used in the work by Wahr et al. (3) and has subsequently been
used in a great many of GRACE studies.
Here, we examine each spherical harmonic coefficient in-

dividually as it varies over time, and we find a least squares es-
timate of a linear term and a seasonal term with a 365-d period.
We consider this fit to be an estimate of the signal contained in the
GRACE data, and the residuals form a conservative estimate of
the noise. Fig. S1, which examines the coefficients spectrally,
shows the results of this procedure. Fig. S1A shows a single
monthly solution of GRACE data for February of 2010. Fig. S1C
shows the prediction of the signal component for this month. Fig.
S1D shows the residual after subtracting the signal from the data.
Generally, the prediction is dominated by energy in coefficients
with degrees less than 30. Meanwhile, the residual has some
energy at low-degree coefficients, but it is mainly comprised of
energy in coefficients where the order m (and degree l) is −30 T
m T 30. This result corresponds to the higher-frequency north–
south-oriented stripes commonly observed. Finally, Fig. S1B
shows the SDs of these residual coefficients over all of the
months considered. We have made the implicit assumption that
the noisy stripes seen in GRACE monthly data are related to the
satellite orbit characteristics specific to each month considered,
and therefore, these stripes should not have a coherent secular
expression over time.

Covariance of the Noise.We use the spherical harmonic coefficient
residuals from each month to construct a covariance matrix (Fig.
S2, shown as a correlation matrix). The residual correlation
matrix shows many off-diagonal terms with large correlations.
This finding is contrary to what is normally assumed by other
works, which examine only the diagonal elements of this matrix
(the variance) and assume that the off-diagonal terms are zero.
These large covariance terms make important contributions to

the observed spatial covariance on the sphere. In Fig. S3, we show
the difference in spatial covariance when the full spectral co-
variance matrix or only the variance (its diagonal elements) is
being used.We consider the covariance between a point in central
Greenland and all of the other points on the Earth, and we do the
same with a point in western Antarctica.

Additionally, in Fig. S4, we show how our spatial variance com-
pares with the calibrated errors distributed with the monthly geo-
potential solutions. Most notably, our spatial variance has significant
longitudinal dependence compared with the calibrated errors, while
also displaying somewhat higher values of SD than the calibrated
errors. It is clear that, without the use of the full covariance matrix,
estimates of the error in mass change results may be inaccurate. By
taking a conservative estimate of the full noise covariance of the data
into account, we can have high confidence in our mass estimates
compared with the results derived from other techniques.

Spherical Slepian Basis. Given that (i) time-variable gravity signals
often originate in specific regions of interest (ii), our data are
discreetly measured and therefore, have a band limit, and (iii) we
may wish to exclude some portion of the spectrum where the
error terms are expected to dominate, then we desire an or-
thogonal basis on the sphere that is both optimally concentrated
in our spatial region of interest and band-limited to a chosen
degree. For this purpose, we use the spherical analog to the
classic Slepian concentration problem (5–8) and define a new set
of basis functions (Eq. S1):

gαð̂rÞ ¼
XL
l¼0

Xl

m¼− l

gα;lmYlmð̂rÞ; gα;lm ¼
Z
Ω
gαð̂rÞYlmð̂rÞdΩ: [S1]

These functions maximize their energy within our region of inter-
est R following (Eq. S2)

λ ¼

R
Rg

2
αð̂rÞdΩR

Ωg
2
αð̂rÞdΩ

¼ maximum; [S2]

where 1 > λ > 0. The Slepian coefficients, gα,lm, are found by
solving the eigenvalue equation (Eq. S3)

XL
l′¼0

Xl′
m′¼− l′

Dlm;l′m′gl′m′ ¼ λglm; [S3]

where the elements of Dlm,l′m′ are products of spherical harmon-
ics integrated over the region R (Eq. S4):Z

R
YlmYl′m′   dΩ ¼ Dlm;l′m′: [S4]

The Slepian basis is an ideal tool to conduct estimation problems
that are linear or quadratic in the data (8, 9). The data can now be
projected into this basis as (Eq. S5)

dð̂rÞ ¼
XðLþ 1Þ2

α¼1

dα gαð̂rÞ ¼
XL
l¼0

Xl

m¼− l

dα;lmYlmð̂rÞ [S5]

and by using a truncated sum up to the spherical Shannon number
(Eq. S6),

N ¼ ðL þ 1Þ2
A
4π

; [S6]

where A/4π is the fractional area of localization to R, we can
sparsely approximate the data, yet with very good reconstruction
properties within the region (10) (S7):
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dð̂rÞ ≈ 
XN
α¼1

dα gαð̂rÞ   for  ̂r∈R: [S7]

This procedure is analogous to taking a truncated sum of the sin-
gular-value decomposition of an ill-posed inverse problem (10).
Because the illposedness is, in part, derived from the focus on
the limit area of interest, our procedure in effect determines the
singular vectors of the inverse problem from the outset based on
purely geometric considerations, which is efficient.
We solve for a Slepian basis for Greenland (Fig. S5) up to the

same degree and order of the available GRACE data (thus, the
bandwidth L = 60). We use the coastlines of Greenland and
extend them by 0.5° to create the region of concentration R.
With truncation at the Shannon number N, the basis has 20
Slepian functions localized to the region, with the 12th best
function (Fig. S5) still concentrated to λ = 86.9%.
The Slepian functions are smoothly varying across the land–

ocean boundary, and as a result, they can have reduced sensi-
tivity near this boundary. This result is why we extended the
concentration region by buffering away from the coastlines. The
size of the buffer zone was based on experiments to recover
a synthetic mass trend placed uniformly on Greenland’s land-
mass (Fig. S6). In Fig. S6A, we show the results of an experiment
where a uniform synthetic signal is placed over Greenland, and
we attempt to recover this trend. To replicate the experimental
conditions faced by the researchers on the ground, we add syn-
thetic realizations of the noise generated from our empirical
covariance matrix to this synthetic signal. The signal is best re-
covered when the region of localization is extended away from
the coastlines by 0.5°. This buffer region allows us to better
measure mass changes near the coastlines of Greenland, but it is
small enough to eliminate influence by mass changes outside of
Greenland, such as in Iceland or Svalbard. In Fig. S6B, we show
how the actual recovered mass trends over Greenland vary de-
pending on the bandwidth and buffer (i.e., region) chosen.
Roughly the same trend is recoverable for a broad combination
of bandwidth and region buffer; however the lower bandwidths
will have reduced spatial sensitivity around Greenland.

Analysis in the Slepian Basis. We project each monthly GRACE
field, which we convert to surface density, into the Slepian basis
for Greenland, which results in a time series for each Slepian
expansion coefficient. For each of our 20 Slepian coefficients, we
fit a first-, second-, or third-order polynomial to the time series in
addition to a 365-d period sinusoidal function, depending on
whether each additional polynomial term passes an F test for
significance. These quadratic and cubic terms represent the in-
terannual changes in the GRACE data over the data time span.
Examples of these fits are shown in Fig. S7. Here, we show the
time series of some coefficients and their best-fitting functions,
where the fitted annual periodic function has been subtracted.
Some time series, such as for α = 20, are best represented by
a higher-order polynomial, whereas others, such as α= 11, are fit
by a linear function, because higher-order terms do not signifi-
cantly reduce variance.
The mass change for an average year, shown in Fig. S8, is found

by taking the total estimated mass change from 2003 to 2010 and
dividing by time considered. Most of the mass change of this
period projects into the first five Slepian functions; however, the
remaining 15 functions of the basis are also important to fully
capture the spatial pattern of mass change, even if their mass
integrals do not form a large part of the total.
After fitting estimated signals in the Slepian domain, themonthly

residuals can be used to form an empirical covariance matrix for
the Slepian functions (Fig. S2B). This information not only gives
us estimates for the uncertainty of the signal estimates for each
Slepian function but also allows us to determine the overall trend
uncertainty for all of Greenland by combining the variance and
covariance in error propagation. Using the full covariance in-
formation allows us to have high confidence in our trend esti-
mation, more than we felt comfortable with in previous work.
Finally, we can examine the time series for the three most-

contributing Slepian functions, which Fig. S9 expresses as the
integral of the product of the expansion coefficient and the
function. It is clear from this behavior function that the mass signal
trends can be well-estimated relative to the variance seen from
month tomonth. The Slepian functions significantly enhance signal
to noise within the region of interest compared with traditional
spherical harmonics, which further validates our approach.
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Fig. S1. Ordered maps of various spherical harmonic coefficients. (A) The geoidal coefficients (dlm,92) of GRACE data from February of 2010 after the average
of all data months has been removed. (B) SDs (σlm ¼ ½1=M

PM
n¼1dlm;n�1=2 for months n = 1, . . ., M, where n = 92 stands for February of 2010) of the residuals as

estimated by subtracting the least squares fits comprising a linear and two seasonal terms with periods 365 and 181 d from each time series of geoidal spherical
harmonic coefficients and computing the covariance of the results. (C) The predicted geoidal coefficients (slm,92) from the least squares model fit as described
before in B. (D) The residual geoidal coefficients (elm,92 = dlm,92 − slm,92) were determined by subtracting the predicted coefficients (C) from the GRACE geoidal
field (A).
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b) Residual Slepian correlation matrix from 108
months between April 2002 and August 2011
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Fig. S2. Correlation matrices for spherical harmonic and Slepian coefficients created from the residuals of 108 mo from April of 2002 to August of 2011. (A)
Correlation between spherical harmonic coefficients derived from the spectral covariance cov[εlm, εl′m′]. (B) Correlation between Slepian function coefficients
for a basis for Greenland with a region buffer of 0.5° and a bandwidth L = 60. The rounded Shannon number is n = 20.
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Fig. S3. Spatial covariance plots of residuals, cov[εr, εr′]. Fields have been rotated, and therefore, the central cross denotes the point r with which all of the
other points r′ covary. In A and C, the full spectral covariance matrix is used. B and D use only the spectral variance and the diagonal elements of covariance
matrix. (A and B) The covariance of a point in Greenland with the rest of the Earth. (C and D) Covariance of a point in western Antarctica with the rest of
the globe.
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Fig. S4. (A) Spatial SD from our full spectral estimated covariance matrix, and (B) SD using only the spectral variance (diagonal) terms of the covariance matrix
(off-diagonal terms are set to zero). Both plots are saturated at 80 cm water equivalent, but A and B have the denoted maximums of 204 and 87 cm,
respectively.
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Fig. S5. Slepian eigenfunctions g1, g2, . . ., g12 that are optimally concentrated within a region buffering Greenland by 0.5°. The dashed lines indicate the
regions of concentration. Functions are band-limited to L = 60 and scaled to unit magnitude. The parameter α denotes the eigenfunction that is shown. The
parameter λ is the corresponding eigenvalue for each function, indicating the amount of concentration. Magnitude values with absolute values that are
smaller than 0.01 are left white.
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Fig. S6. The results of synthetic experiments to examine how recovered trends vary for different bandwidths (L) and different region buffers. (A) We place
a uniform mass loss trend over the landmass of Greenland. To this trend, at each month, we add a realization of the noise from our residual covariance matrix.
We then attempt to recover this trend for different bases over Greenland and report the normalized trend. (B) For the same bases, we report the trend
recovered from the actual GRACE data in gigatons per year. Also drawn is the 100% recovery contour (A). We use this synthetic experiment to inform our
preferred choice of a 0.5° buffer around Greenland.
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Fig. S7. Time series of various (α = 1, 5, 6, 7, 11, 20) Slepian coefficients and their best-fit polynomial (blue lines). Each coefficient is fit by an annual periodic
and linear function as well as quadratic and cubic polynomial terms if those terms pass an F test for variance reduction. Shown here are the coefficient and
fitted function values with the annual periodic function subtracted from both. The mean is removed from each time series.
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