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[1] The separation of zones of apparent downwelling
flow at the ends of the Sierra Nevada suggests a
relatively large wavelength (�500 km) of unstable
growth, but Rayleigh-Taylor instabilities for plausible
rheological structures with a fixed top boundary
condition require much shorter wavelengths (<100 km)
for maximum growth rates. To understand this
difference, we analyze analytical solutions and perform
numerical 2-D plane strain experiments for Rayleigh-
Taylor instability of a dense layer overlying a less dense
substratum, representing the instability between the
mantle lithosphere and the underlying asthenosphere,
focusing on the effects of a shear stress free boundary
condition at the top. The overall effect of this condition is
an enhancement of growth rate factors at long
wavelengths, which depends greatly on the exponential
viscosity variation with depth of the layer. With large or
little variation across the unstable layer, the solutions
approximate those with a fixed top boundary condition
or for constant viscosity, respectively. An intermediate
zone showing the enhanced growth rates includes ratios
of layer thickness to viscosity e-folding length, h/L, of
�1–8 for Newtonian viscosity and �1–4 for nonlinear
viscosity. The free top condition is likely applicable
to geologic situations where the lower crust is weak.
Olivine flow laws and low-temperature estimates at
35 km depth (255–355�C) place the Sierra Nevada
viscosity scaling ratio, h/L, between 5 and 9. Thus longer
wavelengths than commonly assumed for Rayleigh-
Taylor instabilities seem permissible when viscosity
decreases with depth and the top surface of the layer is
only weakly constrained. Citation: Harig, C., P. Molnar, and

G. A. Houseman (2008), Rayleigh-Taylor instability under a shear

stress free top boundary condition and its relevance to removal of

mantle lithosphere from beneath the Sierra Nevada, Tectonics, 27,

TC6019, doi:10.1029/2007TC002241.

1. Introduction

[2] The conductive temperature profile across the mantle
lithosphere indicates that the mantle lithosphere should be
more dense than the underlying upper mantle when brought
to the same pressure, assuming no compositional differ-
ences. This density contrast is inherently unstable. Small
temperature, and hence density, perturbations to this layer-
ing are normally destroyed by thermal diffusion, but if a
perturbation is large or can grow fast enough, thermal
diffusion can be neglected owing to its long time scale. In
this case, the mantle lithosphere can be treated as a case of
Rayleigh-Taylor instability [Canright and Morris, 1993;
Chandrasekhar, 1961; Conrad and Molnar, 1997]. For
Newtonian viscosity, density perturbations will initially
grow exponentially with time. When perturbations grow
to several tens of percent of the unstable layer thickness,
sinking regions will downwell into the upper mantle super-
exponentially [e.g., Canright and Morris, 1993]. As it is
removed, mantle lithosphere will be replaced with less
dense asthenosphere in the isostatic column. Therefore this
removal would cause the surface to rise to maintain pressure
balance [e.g., Bird, 1978; England and Houseman, 1989].
[3] In Tibet, an area of much current study, convective

removal of thickened Asian lithosphere is one [Houseman et
al., 1981] of many tectonic processes proposed to occur
beneath the Tibetan Plateau in response to the Indian-
Eurasian collision [e.g., Dewey and Bird, 1970; Dewey
and Burke, 1973; Ni and Barazangi, 1983; Owens and
Zandt, 1997; Willett and Beaumont, 1994; Zhao and Morgan,
1985]. The upper mantle of the Tibetan Plateau is charac-
terized by large east–west seismic wave speed gradients
and attenuation, and possible north–south wave speed
gradients [e.g., Dricker and Roecker, 2002; McNamara
et al., 1997; Molnar, 1990; Ni and Barazangi, 1983;
Woodward and Molnar, 1995]. Additionally, tomographic
imaging has revealed what seems to be a narrow zone of
downwelling mantle lithosphere beneath central Tibet
[Tilmann et al., 2003]. Together, these observations suggest
a dynamic origin for some of the plateau’s deformation such
as high mean elevation and the distribution of normal
faulting across the plateau [Houseman and Molnar, 1997].
What remains uncertain, however, is the length scale of
mantle lithosphere deformation. Studies covering both large
areas, such as that by Dricker and Roecker [2002] (�25�),
and small areas, such as that by Tilmann et al. [2003] (�5�),
show lateral variations in the upper mantle on these scales.
[4] In the Sierra Nevada in California, the evidence

favoring removal of mantle lithosphere from beneath the
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range is clearer. Examination of entrained xenoliths between
depths of 40 and 100km from before 8 Ma indicate the
presence of a 40–60 km eclogite-rich layer beneath the
Sierran batholith in the crust [Ducea and Saleeby, 1996,
1998; Lee et al., 2001]. Magmatism at 3.5 Ma and addi-
tional xenoliths erupted since imply the absence of this
eclogite layer and presumably its removal by this time, and
logically, the deeper mantle lithosphere as well [Farmer et
al., 2002]. Indications of this removal event are also seen in
geomorphic observations. For instance, there is evidence of
tilting with an increase in height of the range crest on its
western range flank [e.g., Stock et al., 2004; Unruh, 1991],
a fairly uniform westward shift of the edge of normal
faulting and horizontal extension around 3.5 Ma, and
possible initiation of folding and thrust faulting along the
western margin of the Sierran microplate [Jones et al.,
2004].
[5] Two high seismic wave speed anomalies, the Isabella

and Redding anomalies, extending to more than 250 km
depth beneath the Central Valley near the ends of the range
are likely locations for the removed lower lithosphere
(Figure 1) [Benz and Zandt, 1993; Jones et al., 1994; Reeg
et al., 2007]. Both the Isabella [Jones and Phinney, 1999]
and the Redding anomalies [Hartog and Schwartz, 2000;
Özalaybey and Savage, 1995] are seismically isotropic
which can be characteristic of eclogites [Fountain and
Christensen, 1989]. Furthermore, the area above the Isabella
anomaly is undergoing active subsidence, which would be
expected over such a downwelling [Saleeby and Foster,
2004]. Certainly, there is not complete north–south sym-
metry to the Sierra Nevada Pliocene history, as the passing
of the southern edge of the Gorda plate and Mendocino
Fracture Zone illustrates [Atwater and Stock, 1998]. But, it
seems more likely than not that the two anomalies are the
result of the same process, and very reasonable to postulate
so [Jones et al., 2004; Le Pourhiet et al., 2006].
[6] Although Rayleigh-Taylor experiments have been

carried out for no-slip top boundary conditions and differing
rheological structures, the �500 km separation of the
Sierran anomalies is significantly longer than the wave-
length for the peak growth rates for these conditions. Simple
experiments (constant viscosity, constant density) have
shown that the wavelength corresponding to maximum
growth rate factor is about three times the unstable layer
thickness (lmax � 3h) [e.g., Conrad and Molnar, 1997].
Other experiments have shown that a buoyant crustal layer
also influences the growth rate of instabilities and sup-
presses growth of longer wavelengths [Neil and Houseman,
1999]. We explore what other factors might influence the
Rayleigh-Taylor instability process to favor the growth of
longer wavelength perturbations and downwellings.
[7] Our goal is to determine the effects of a shear stress

free boundary between the crust and mantle lithosphere on
growth rates of Rayleigh-Taylor instability under various
rheological stratification, such as exponentially varying
viscosity with depth. This boundary condition represents
one possible end member, with the other being a no-slip top
boundary condition. The state of Sierran lithosphere at the

time convective removal began was surely in between these
two idealized states. Arguments can be made, however, that
both are reasonable approximations.
[8] The thermal structure of the lithosphere around 10 Ma

can be inferred from several measures. The present-day
surface heat flux in the western Sierra is very low (18–
60 mW m�2), and can bound the temperature at 35 km
depth to 255–355�C simply by assuming a steady state
[Lachenbruch and Sass, 1977; Saltus and Lachenbruch,
1991]. Separate temperature estimates from xenolith geo-
thermometry can bound the temperature at greater depth,
130 km, to only 925�C [Ducea and Saleeby, 1998]. A
steady state using this measurement would indicate a
temperature at 35 km depth of similar range to before,
250–350�C [Molnar and Jones, 2004]. Thus, on the one
hand, very low lithosphere temperatures might be used to
assume a no-slip condition at the Moho with an undeform-
ing crust. Alternatively, as mentioned, the Sierra Nevada is
estimated to have had a 40–60 km thick eclogite-rich layer
beneath the batholith [Ducea and Saleeby, 1996, 1998; Lee
et al., 2001]. Field observations of eclogite and granulite
[e.g., Austrheim, 1991] have shown that eclogites can
deform with much lower viscosity than their granulite
protoliths. Moreover, the felsic quartz-rich upper crust that
survives today could have been weak even at the low
temperatures estimated for depths of 30–40 km, for quartz
flows at relatively low shear stress at such temperatures
[e.g., Brace and Kohlstedt, 1980; Sibson, 1977, 1982].
[9] Jull and Keleman [2001] examined the conditions

under which dense mafic lower crustal material could
become convectively unstable. Under their most extreme
circumstances, such as an assumed background strain rate of
10�14 s�1, Moho temperatures as cold as 550–650�C could
produce an instability in 10 Ma for a dense layer 10 km
thick immediately below. Given estimates for a Sierran
eclogite layer are much thicker, it is possible the bottom
several kilometers were at or above this range of temper-
atures. An instability initiated in the Sierra mantle litho-
sphere could provide the background strain rate necessary,
and eclogite could be swept along with lower material.
Thus, if viscosity of the middle crust were sufficiently low,
the top boundary condition appropriate for removal of this
eclogite layer with the underlying mantle lithosphere could
be approximated by a shear stress free boundary, either at
the Moho or within the eclogite layer. Here, we present
both analytical and numerical solutions to idealized prob-
lems with this stress free boundary above our unstable layer.

2. Background Theory and Methods

[10] The Rayleigh-Taylor instability problem in the Earth
is one of Stokes flow for viscous fluids, representing a
balance between body forces and surface tractions after
assuming incompressibility and neglecting inertial terms.
The governing equation takes the form:

@sij

@xj
� rgdiz ¼ 0 ð1Þ
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where sij are stress components, xj are spatial coordinates,
r is density, g is gravity, and dij is the Kronecker delta. We
solve equation (1) for a material layer overlying a less
dense half-space (or a subspace of finite depth) seen
schematically in Figures 2 and 3. We allow for a general
nonlinear constitutive equation between deviatoric stress,
tij, and strain rate, _�ij,

tij ¼ B _E
1=n�1ð Þ

_�ij ð2Þ

where _E is the second invariant of the strain rate tensor, n
is the rheological exponent, and B is the viscosity coeffi-
cient. Under familiar Newtonian rheology, n = 1, and we
have the relation h = (1/2)B. For a non-Newtonian fluid, n
> 1, viscosity is strain-rate-dependent as heff = (1/2)B _E(1/

n�1), where heff is an effective viscosity, which changes as
strain rates change with time.

[11] Temperature gradients inherent to the mantle litho-
sphere will cause viscosity to vary within the layer. Labo-
ratory experiments have shown that linear temperature
gradients translate approximately to an exponential varia-
tion of viscosity with depth [e.g., Fletcher and Hallet,
1983]. We therefore consider cases in which B varies
exponentially with depth, as seen in Figure 2. Depth, z, is
set to zero at the interface between layers of different
density and decreases downward. Viscosity, h, then takes
the form:

�h ¼ h0e
gzð Þ ð3Þ

where h0 is the viscosity at the layer interface, and 1/g = L is
the viscosity (e-folding) decay length. Various values of
decay length are used so that over a layer of thickness h we
have hg = 1, 2, 4, etc.

Figure 1. Map view of the Sierra Nevada range in California with colored topography from the Global
Land One-km Base Elevation (GLOBE) Project. High-speed seismic anomalies at about 150 km depth
are contoured in percent Vp perturbation from the IASP91 model. Tomography contour provided from
Reeg et al. [2007].

TC6019 HARIG ET AL.: RAYLEIGH-TAYLOR SHEAR STRESS FREE TOP

3 of 15

TC6019



[12] We also perform calculations with different density
structures. The majority of our work is done with a constant
density difference. For a few cases we use density decreas-
ing linearly with depth in the layer, as would be the case for
a linear temperature gradient in the lithosphere and a
constant coefficient of thermal expansion. Linear density
takes the form

r zð Þ ¼ 2Dr
h

z ð4Þ

so that over a layer of thickness h, the dimensionless (r(z)/
Dr) density at the top and bottom surfaces are 2 and 0
respectively, and we have the same total mass anomaly in
the layer in both sets of experiments. The density anomaly
in the substrate is zero.
[13] To simplify solutions, we nondimensionalize growth

rate factors (q) and wave numbers (k) by the appropriate
length and time scales. Symbols used here and elsewhere
are listed in the notation section. For exponentially varying
Newtonian viscosity with depth we have

q0L ¼ q
2h0
DrgL

; k 0L ¼ kL ð5Þ

with subscripts denoting the choice of nondimensionaliza-
tion as in the work by Molnar et al. [1998]. The time scale
2h0/DrgL is determined from the time required to produce
unit strain under a deviatoric stress of magnitude DrgL. We
also devote some discussion later to comparisons between
cases with large viscosity variations and those with no

viscosity variations, given the different nondimensionaliza-
tions required.
[14] We perform linear stability analyses for cases with

constant density to find analytical solutions for growth
rate factor, q0 as a function of dimensionless wave number,

Figure 2. (left) Viscosity structure and (right) linear stability boundary conditions. Depth, z, is zero at
the bottom interface of the unstable layer and decreases downward; z = 0 represents the bottom of the
mantle lithosphere, and z = h represents the shear stress free top surface, which could be either at
the Moho or within the lower crust. We include the unused fixed-top condition to better show the
difference to previous work. Viscosity is an exponential function with depth, and B is the viscosity
coefficient. Subscripts of 1 are for quantities in the layer, while subscripts of 2 are quantities of the
lower half-space.

Figure 3. Finite element calculation boundary conditions
for a viscous half-space. Again, z0 = 0 is the bottom of the
unstable layer (i.e., the mantle lithosphere), and z0 = 1
represents the shear free top surface (i.e., at the Moho or
within the lower crust). We also include the unused fixed-
top condition to better show the difference to previous
work. In calculations with an inviscid half-space, the mesh
extends from 0 to 1.
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k0 = kL. With linear stability, the assumed form of solution
for n = 1 cases is

W zð Þf x; yð Þeqt ð6Þ

where

r2f x; yð Þ ¼ �k2f x; yð Þ: ð7Þ

W(z) is the function of downward velocity dependent on z
and f(x, y) is a harmonic function with wave number k, here
assumed to be cos(kx). We consider only first-order pertur-
bations to background stress and strain rates, and follow the
approach of Conrad and Molnar [1997]. The boundary
conditions for these cases are shown in Figure 2.
[15] Linear stability analyses are paired with 2-D plane

strain numerical calculations using the finite element pro-
gram Basil (http://homepages.see.leeds.ac.uk/�1eargah/basil/).
For numerical experiments of a layer over an inviscid half-
space, a single layer of triangular mesh is created from 0	 z	
h and a harmonic perturbation of 0.01(1�z) amplitude is
applied to the mesh. Velocity fields and subsequent deforma-
tion are then calculated iteratively through time. For cases of a

viscous substratum, we follow a similar process, but the mesh
is extended from �4h 	 z 	 1h. This depth is chosen to strike
a balance between minimizing the influence of the bottom
boundary of the substratum and the calculation requirements of
a finer mesh. Boundary conditions for the calculation are
shown in Figure 3. For each experiment the bottom boundary
of the unstable layer is perturbed using a specific wavelength
equal to twice the width of the box, and to sample the k0

spectrum we varied the horizontal dimension of the box. For
Newtonian viscosity calculations, n = 1, we fit jZ0j, the
absolute value of the vertical coordinate of the maximum
downwelling, versus dimensionless time, t0 (=DrgL/2h0), to a
straight line of the form

ln jZ 0j ¼ ln Z0 þ q0est t
0 ð8Þ

to estimate the growth rate factor, q0est. Line fitting is limited to
the section of growth that follows the decay of initial transient,
and before growth to large amplitudes (a few tens of percent).
We plot both growth rate curves from linear stability analyses
and numerical values of q0. In general the numerical results
agree within 3% of linear stability analyses.

Figure 4. Linear stability analysis curves of growth rate factors (q0) versus wave number (k0) for simple,
previously known experiments. The free-top cases were discussed briefly by Hoogenboom and
Houseman [2006], and substratum viscosity was explored by Molnar et al. [1998], though with a fixed-
top condition. These cases have density and viscosity constant with depth but that vary in their top
boundary condition and subspace viscosity.
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[16] For calculations with a nonlinear (non-Newtonian)
viscosity relation we use a power law exponent of n = 3.
Following Houseman and Molnar [1997], lines of the form

Z 0 1�nð Þ ¼ n� 1ð Þ C

n

� �n

t0b � t0
� �

ð9Þ

with t0 = t(DrgL/B)n are fit to the output position data Z0.
Here, t0b represents the time when the downward speed of
the downwelling approaches infinity, signaling when the
blob would drop off completely from the layer. C is a
dimensionless parameter analogous to the growth rate
factor, q0, in Newtonian calculations, which we will use to
compare growth rates for various wave numbers.

3. Exponentially Varying Newtonian Viscosity

With Depth

3.1. Inviscid Substratum and Constant Density

[17] In the most basic Rayleigh-Taylor experiments there
is a fundamental difference between using a no-slip and a
free-slip boundary condition at the top of the unstable layer.
The use of a no-slip boundary condition ensures that as k0

approaches zero, the growth rate factor q0 also approaches
zero [e.g., Conrad and Molnar, 1997; Molnar et al., 1998;
Whitehead and Luther, 1975]. When the free-slip condition

is used, however, q0 can be finite in the limit of small k0, as
in the linear stability analysis in Figure 4. We plot four
simple cases with constant viscosity and density to illustrate
this difference, and show how the addition of a viscous
substratum can retard growth. Here, the case with a free top
and an inviscid subspace maintains a finite value near k0 = 0,
but the other cases trend to 0 when k0 ! 0. We further
examine this difference with more complex, depth-varying
physical properties.
[18] If there is significant viscosity contrast between the

mantle lithosphere and asthenosphere, any motion will be
dominated by the viscosity of the lithosphere. In this
instance, the asthenosphere can be approximated by an
inviscid substratum of infinite depth by setting the ratio
hastheno/hman. lith ! 0. Considering this assumption in the
context of stagnant lid convection, we can imagine how the
mantle lithosphere could deform irrespective of astheno-
sphere influence [Moresi and Solomatov, 1995]. We begin
by examining cases that use this approximation for the
subspace and depth varying viscosity in the unstable layer
above it. We examined a range of h/L values with results
shown in Figure 5. These calculations exhibit two styles of
growth. For large viscosity variations across the layer (h/L >
8), growth rate curves approach those for the case with
exponential viscosity in two infinite half-spaces, from
Conrad and Molnar [1997]. The viscosity in the top part
of the layer becomes so great that its free boundary is

Figure 5. Growth rate versus wave number for various values of h/L. Dashed lines are results of linear
stability analysis. Points are results of numerical calculations. This experiment is a layer over an inviscid
half-space. The layer has exponentially varying viscosity and a stress free top boundary condition. Note
that curves for linear stability h/L = 8 and 10 are coincident everywhere except close to k0 = 0.
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Figure 6. (a) Growth rate factor versus wave number for an experiment with a free top and a viscous
substratum from 0 < z <�4h. Both linear stability (lines) and numerical (points) results shown. (b) Growth
rate factor versus wave number as above for case of h/L = 2 to show the differences resulting from a
substratum extending to a depth of �4h depth approximation as opposed to using an infinite half-space.
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essentially removed from the problem. When the ratio of h/
L drops below � 8, however, the growth rates transition to a
style characteristic of a free top, with finite q0 at k0 = 0. Here,
the entire layer is involved in the foundering, and the stress
free boundary condition at the surface becomes important.

3.2. Viscous Substratum and Constant Density

[19] We also perform experiments using a viscous sub-
stratum, by continuing the exponential viscosity scaling to
greater depth. When a viscous substratum is added, in this
case to depth of z = �4h, the form of the growth rate
changes slightly (Figure 6a). For large viscosity variations
(h/L > 8), growth rate curves again approach those of a
calculation of exponential viscosity in two infinite half-
spaces, with q0 ! 0 as k0 ! 0. When the ratio of h/L drops
below � 8, however, the growth rates appear to be a blend
of both the stress free and fixed-top styles as in Figure 5,
showing characteristics of both. For all ratios of h/L <
8 examined, q0max does not occur at a wave number smaller
than k0 � 0.5. Yet for several cases, in the limk0 ! 0, q0

remains finite. This contrasts with the behavior for an
inviscid substratum in Figure 5, where, for h/L = 1 and 2,
q0max occurred at k

0 = 0. Additionally, in Figure 4 we saw the
relation

lim
k 0!0

q0 6¼ 0 ð10Þ

applied only when the viscosity of the substratum is zero.
Now we observe a range of viscosity scalings that meet this
condition. Thus, exponential viscosity introduces a relative
enhancement of growth rate at long wavelength (small wave
number). Alternatively, the viscous substratum retards the
growth rate overall, with increasing effect as jk0q0 max � k0j
increases. It also affects the wave number of maximum
growth rate, for k0q0 max varies with h/L, and reaches a
minimum for the value h/L � 2, not as h/L ! 0.
[20] For both numerical and analytical results, we extend

our substratum to a depth of �4h. To show the effect of a
finite depth on the dependence of q0 on k0 we plot (Figure 6b)
the linear stability curves for both a case with substratum
depth limited to �4h (as in Figure 6a) and the same case
with an infinite half-space substrate to illustrate the differ-
ences resulting from this approximation. The divergence
between the growth rates for the two structures is limited to
small wave numbers (k0 < 0.25) and h/L ratios below 4.
[21] As h/L transitions through the intermediate window

between the small h/L, stress free and large h/L, fixed-top
end-member styles, a plot of limk0 ! 0 q0 with the log(h/L)
for both the viscous (Figure 6) and inviscid substrata
(Figure 5) displays a smooth transition (Figures 7a and
7b). We show this plot for two nondimensionalizations;
Figure 7a displays dimensionless results with respect to L,
and Figure 7b shows them with respect to h. Overall, the
difference between the inviscid and viscous cases can be
thought of as a result of retardation caused by the viscous
substratum. This retarding is concentrated where h/L < 2.
Both curves (for both scalings) are similar for the region h/L
� 1 as the substratum has little effect due to its relatively

low viscosity. In Figure 7a, for values of h/L around 1, we
can see that the viscous substratum narrows the band of
intermediate growth rate curves, and shifts the peak to a
slightly higher h/L value. In Figure 7b, we see that the
substratum affects approximately the same h/L range, but
with obviously different results. When h/L � 1, the growth
rate factor scaled by h levels to a value of 0.25 as the
viscosity variation approximates a constant value.
[22] For small values of h/L (h/L < 1), a nondimension-

alization using h instead of L becomes more sensible,
because the growth of perturbations is driven by the density
contrast in the layer of thickness h. In such a case (not
shown), q0(k0) transforms to the solution for constant vis-
cosity, and again, limk0 ! 0, q0 is zero as in Figure 4.
[23] To understand the long-wavelength enhancement of

growth rate, we calculate eigenfunctions for the z compo-
nent of velocity, w0. Calculating the eigenfunction at infinite
wavelength (k0 = 0) is impossible because the matrix created
from applying boundary conditions to the assumed solution
form, equation (6), collapses to a determinant of zero
regardless of growth rate factor; therefore we show a series
of eigenfunctions for a fixed value of k0 = 0.1 and various
values of h/L in Figure 8. With this series we examine the
depth distribution of flow at long wavelength. The unstable
layer is from 0 < z0 < 1 and the eigenfunction amplitudes
have been normalized so that w0(0) = 1. When h/L = 10, the
eigenfunction in the lower layer is highly oscillatory about
zero, indicating that material is being turned over in several
small-scale sections. For intermediate h/L values, such as h/
L = 1, the wavelength of the oscillation increases, so that
near the layer interface there exists substantial vertical
motion. In fact, the curve for h/L = 10, the only solution
outside the free-top fixed-top transition zone, is the only
curve that does not share the same amplitude in the 1 > z0 >
�1 region.
[24] Our choice of exponential viscosity in the substrate

is one of simplicity. We can compare these growth rate
factors to those of the more probable case with constant
viscosity in the substrate (z0 < 0) for several values of h/L
(see Figure 9). Aside from the general differences in growth
rate factor amplitude, we see only subtle changes in the
small k0 regions. A constant viscosity substrate alters growth
at very long wavelengths (k0 < 0.4) so that q0 approaches
zero at k0 = 0.

3.3. Inviscid Substratum and Linear Varying Density

[25] We also perform experiments with density varying
linearly with depth in the layer, shown in Figure 10, for
which explicit linear stability solutions cannot be obtained
analytically. For a fixed top, linear density has been previ-
ously shown to decrease growth rates by �25% (but
strongly dependent on h/L) and to shift the maximum
growth rate factor to slightly higher wave numbers [Conrad
and Molnar, 1997; Houseman and Molnar, 1997; Molnar et
al., 1998]. We examine whether these same effects of linear
density apply under a shear stress free upper boundary
condition.
[26] The most striking difference between the cases of

linear density and constant density is the smaller growth rate
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Figure 7. Semilog plots of limk0 ! 0 q0 versus h/L for substrate continuing to negative infinity. (a) Plot
of q0 and k0 nondimensionalized by L, for both viscous and inviscid stress free top experiments. Here, q0L
= q h

DrgL. (b) Same as Figure 7a but q0 and k0 nondimensionalized by h, so q0h = q h
Drgh.
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factors for linear density. Comparing these graphs, we
observe that q0max for the curve h/L = 1 is �35% of its
constant density value. The other q0max values are �67% of
that for constant density for h/L = 2 and �80% for h/L = 4
and 8. So, the impact of linear density is much greater when
viscosity variation in the layer is low (h/L < 2).
[27] Comparing the curves for h/L = 4 and 8 in both

experiments (Figures 5 and 10) also shows that linear
density shifts the location of q0max to lower wave number
(longer wavelength). The exact shift (defined asDk0 = (k0max

linear density � k0max constant density)/k
0
max constant density) cannot

be found without running calculations at additional k0

values, but we estimate Dk0 � �25%. This differs from
previous work for a rigid top, as linear density was found to
push peak growth rate to higher wave number [Conrad and
Molnar, 1997; Molnar et al., 1998].
[28] Finally, we notice that for h/L = 4, growth rate

factors at the longest wavelengths are actually enhanced
over their constant density values. Moreover, there is no
indication that q0max ! 0 as k0 ! 0.

3.4. Viscous Substratum and Linear Varying Density

[29] Figure 11 shows our results for linear density calcu-
lations with a viscous substratum, and displays the three
main effects described for the inviscid calculations. Com-
pared to constant density, growth rates are reduced overall,
with the greatest effect at small h/L values. For h/L = 8,

q0max is �85% of the constant density value, and for h/L = 1,
q0max is �38% of the constant density value. Second, the
location of q0max is shifted to smaller wave number by Dk0

� 25%. Finally, the growth rate curves for h/L = 4 and 2.5
both show some enhancement at long wavelength. h/L = 4
has larger absolute growth rates, and the h/L = 2.5 curve
shows some flattening at long wavelength.
[30] In these calculations, the viscous substratum exerts

the same enhancement of q0 at low k0 compared with fixed
top as for constant density. Although we cannot obtain
solutions for linear stability, the numerical results suggest
that in the limk

0
! 0, q

0 will be finite, for a 2 < h/L < 4.

4. Non-Newtonian Exponentially Varying

Viscosity With Depth

[31] We perform additional numerical calculations of a
layer over an inviscid half-space using a nonlinear viscosity
exponent, n = 3, in the constitutive equation, equation (2).
Again, our interest is examining how nonlinear viscosity
interacts with a shear stress free top boundary to affect the
growth rate of the downwelling. We again carried out two
sets of experiments, one with constant density in the layer,
and another with linearly varying density. As before, each
set is performed for various wave numbers and viscosity
scalings. Unfortunately, the nonlinear viscosity exponent
means that for a scaling of h/L = 4 the effective variation of

Figure 8. Plots of the downward velocity (w0) eigenfunction for a fixed values of k0 = 0.1 and various
values of viscosity scaling, h/L. Experiments are for a layer of thickness 1 with bottom boundary at depth
0. The functions are normalized so that the amplitude is 1 at depth 0. Inset is zoom of area around z = 0.
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Figure 9. Growth rate factor versus wave number from linear stability cases with infinite depth for
various h/L values. Solid curves are previous data (Figure 6a) from experiments with exponential
viscosity in the substratum. Dashed curves are for constant viscosity in the substratum. For (a) h/L = 0.5,
(b) h/L = 2.0, (c) h/L = 4.0, and (d) h/L = 8.0.
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viscosity in the layer becomes (e4)3. This large variation
prevented us from examining larger values of h/L.
[32] Our results for linearly varying density with an

inviscid substrate are seen in Figure 12. Overall, this
calculation exhibits some of the same characteristics of
similar calculations with Newtonian viscosity (Figure 10).
At large wave numbers (k0 > 2), growth rates increase
monotonically as viscosity variation in the layer increases.
These calculations also have smaller (�50%) growth rate
factors than their constant density counterparts (not shown),
as expected. They also share the finding that q0 is finite as k0

! 0. What is surprising in these results is that for the for
case h/L = 4 in Figure 12, a local minimum of growth rate
factor develops at k0 � 0.25. Further work examining this
behavior is forthcoming.

5. Discussion/Conclusions

[33] The Rayleigh-Taylor calculations show that the
overall effect of a shear stress free top boundary condition
is to enhance growth rates at long wavelengths, k0 < 0.5 (l >
4pL). The degree of enhancement depends also, however,
on exponential viscosity variation, linear density variation,
and/or the presence of a viscous substratum.
[34] Linearly decreasing density reduces growth rates

relative to those for constant density in the layer, as
expected. Interestingly, however, linearly decreasing density
also enhances long-wavelength growth rates for a narrow

band of viscosity depth profiles. Specifically, we noticed
that when h/L = 4, long wavelengths grow faster for linear
density than for constant density (Figure 11). Considering
these rheological scalings together, we have retardation that
leaves wave numbers near k0 � 0.5 minimally affected, little
decrease in q0 at 0.2 < k0 < 0.5, and the shifting of k0q0max
toward long wavelengths (k0 � 0.5) as in Figure 11,
compared to fixed top calculations.
[35] Differences between the free and fixed-top cases

vary with h/L and disappear when h/L > 8. For instance,
for h/L � 2.5, q0max occurs at wave numbers of k0free � 0.3
(Figure 11) and k0fixed � 1.2 [Molnar et al., 1998, Figure 7]
for free and fixed tops, respectively. When h/L � 4 the
difference decreases so that q0max occurs at wave numbers of
k0free � 0.6 and k0fixed � 0.8. With a free top, since several
growth rate curves flatten for small k0 values, but those for
the fixed top do not, q0max is less important as it is where q0

decreases rapidly with decreasing k0, and greater differences
between fixed and free tops seem permissible [Molnar et al.,
1998].
[36] The implications for the deformation of the mantle

lithosphere can be seen in comparison to the Sierra Nevada
in California. Two high seismic wave speed anomalies in
the mantle underlie the Sierra Nevada. If the two anomalies
formed by similar Rayleigh-Taylor processes, they would
define a natural wavelength for this mechanism. Before we
apply the scaling relations presented above to the Sierra
Nevada, let us note that they do not offer unique explan-

Figure 10. Growth rate versus wave number for various values of h/L. Numerical results are shown for
experiments with linear varying density, exponential viscosity varying with depth, and a free top
boundary condition. These calculations also assume an inviscid constant density substratum.
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ations for the long distance between the Redding and
Isabella anomalies, which we presume to mark zones of
downwelling in the upper mantle. First, we apply relation-
ships derived for two-dimensional flow to a three-dimen-
sional structure. The locations of the two anomalies at the
northern and southern ends of the Sierra Nevada, which
itself shows marked east–west variations, implies that the
third, east–west dimension could be important. Second, we
have assumed that the material is isotropic. Recent work by
Lev and Hager [2008] shows that anisotropy can affect the
wavelength of maximum growth. In particular, resistance to
shear on horizontal (or vertical) planes was much less than
that on planes dipping at 45�, and the maximum growth rate
could increase two to perhaps three times.
[37] As noted, the dimensional wavelength from calcu-

lations depends on the choice of h/L, and we should
consider the realistic scaling ratio, h/L, of the Sierra
Nevada mantle lithosphere. Using a linear geotherm in
the lithosphere,

T zð Þ ¼ T0 � bz ð11Þ

(remembering z = 0 at the base of the lithosphere) the
viscosity can be expressed from olivine laboratory experi-
ments [Kohlstedt et al., 1995] as approximately

h ¼ 1

2
A�1=nð�xxÞ1�n=n

exp
Ea

nRT0

� �� �
exp gzð Þ ð12Þ

where A is constant and [Conrad and Molnar, 1997]

g ¼ Eab
nRT2

0

¼ Ea

nRT2
0

DT

h
¼ 1

L

:
:
:
h

L
¼ EaDT

nRT2
0

ð13Þ

Parameter descriptions are given in the notation section.
[38] Using reasonable values of activation energy Ea

between 400 and 600 kJ/mol K, temperature 1000 < T0 <
1600�K (727 < T0 < 1327�C), 370 < DT < 1130�K, and
stress-strain exponent n as 3.5, the ratio h/L for the Sierra
Nevada varies from 5 to 9. This places the Sierra Nevada
scaling ratio at the upper limit of the range of h/L values
from our experiments [Conrad and Molnar, 1997; Kohlstedt
et al., 1995; Lachenbruch and Sass, 1977; Saltus and
Lachenbruch, 1991].
[39] For example, for h/L = 6, and a combined eclogite

layer and mantle lithosphere thickness (h) of 200 km, would
yield a L � 33 km. We remind the reader that although
our experiments are 2-D plain strain calculations, the Sierra
Nevada deformation is certainly 3-D, and the effective k0

would be a combination of the wave numbers of disturbances

parallel and perpendicular to the range (i.e., k0eff =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 02k þ k 02?

q
) [Kerr and Lister, 1988]. Thus we can consider

as a minimum the Sierra Nevada range parallel natural
wavelength, which is approximately 500km. Setting wave-
length as 2pL/k0 = 500 km implies k0 � 0.4. As noted above,

Figure 11. Growth rate versus wave number for various values of h/L. Numerical results are shown for
experiments with linear varying density, exponential viscosity varying with depth, and a free top
boundary condition. These results also have a viscous substratum.
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this rapid growth of instability with such a l seems more
permissible with a free top, because the growth rate factors
decrease little for k0 < 0.5. Thus when viscosity decreases
with depth and the top surface of the unstable layer is
only weakly constrained longer wavelengths than com-
monly assumed for Rayleigh-Taylor instabilities should be
considered.

Notation

B viscosity coefficient (where constant in the layer).
B0 viscosity coefficient at the base of the layer,

through which it decreases with depth.
b geothermal temperature gradient.
_E second invariant of the strain rate tensor.

Ea activation energy.
g gravitational acceleration.
h thickness of layer.
k wave number of perturbation to the base

of the layer.
Dk0 shift in k0max seen in experiments with linearly

varying density.

L characteristic e-folding depth scale for exponential
decrease in viscosity coefficient.

p pressure.
q growth rate of Rayleigh-Taylor instability for

Newtonian viscosity.
R gas law constant.
t time.
T temperature.
T0 temperature at base of layer.
DT temperature difference across layer.
u horizontal component of velocity.
w vertical component of velocity.
x horizontal coordinate.
z vertical coordinate.

Dr density difference between the layer and the
underlying half-space or subspace.

sij stress component.
tij deviatoric stress component.
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Figure 12. Growth Rate versus wave number for cases with nonlinear viscosity (n = 3) with several h/L
viscosity scalings. These calculations have linearly varying density and an inviscid substrate.
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